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Trapped Particles at a

Magnetic Discontinuity

David P. Stern
Laboratory for Space Physics
Goddard Space Flight Center
Greenbelt, Maryland 20771

Abstract

At a tangential discontinuity between two constant magnetic

fields a layer of trapped particles can exist ; this work examines

the conditions under which the current carried by such particles

tends to maintain the discontinuity (neglecting finite gyroradius

effects). Three cases are examined. If the discontinuity separates

aligned vacuum fields, the only requirement is that they be antipara-

llel. With arbitrary relative orientations, the field must have

equal intensities on both sides. Finally, with a guiding center

plasma on both sides, the condition reduces to the continuity of

B 2(1 + ~ ) , a relation which is also derivable from hydromagnetic

theory. Arguments are presented for the occurence of such trapped

modes in the magnetopause and for the non-existence of specular
which was 

particle reflection there, postulated by earlier theories.
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According to classical electrodynamics a tangential discontinuity

between vacuum magnetic fields B and B2 must contain a sheet current

with a surface current density

A
where x is orthogonal to the discontinuity in the direction leading

into the medium with field B1 .

In general a tangential discontinuity can also support a trapped

layer of charged particles. The purpose of this note is to investigate

(under certain simplifying assumptions) the conditions which are required

for this layer to be able to provide the sheet current of equation (1)

The following cases may be distinguished;

(1) B AND B2 ALIGNS
1

Assume that B - B is in the same direction as B : two cases

then may exist, depending on whether B 1 and B2 are antiparallel

or parallel. As shown in figure (1) , in the first case all charged

particles move in such a direction that their motion contributes a

current parallel to J , while in the second case they all move in the

opposite direction. Thus only with antiparallel fields can the particle

layer maintain the discontinuity.

It should be pointed out here that even though a sharp field discon-

tinuity is assumed, the current flow contributed by trapped particles
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of any energy will be spread out over a thickness equal to the sum of

their gyroradii in the two media. This spreading out will be ignored

in the present work, but it should be taken into account if the detailed

structure of the discontinuity is required.

It may also be noted here that the trapped mode shown in figure (l-a)

was used by Cowley [7172] in a model of the plasma sheet existing in

the earth's magnetospheric tail. Since the field in the plasma sheet

appears to vary on a scale considerably larger than the gyration radii

of particles found there, it is not clear how well this application is

justified. The present work will only deal with applications to the

magnetopause, where the change in most cases is sufficiently abrupt, at

least for protons.

(2) B1 AND B NOT ALIGNED

In this case it may be shown that the average motion of all trapped

particles has the same direction and that this direction coincides with

that of J if and only if the field intensities are equal.

Let a given particle enter B1 with initial velocity

hA A
V = x + V2 -B + (x B

A

* " v + v
2
B1 (2)

and suppose that in the plane orthogonal to B1 the particle describes

an arc of a length of either 21 or 2n - 2~ , where in any case
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is between 0 and n/2 (figure 2 ). It is then easily seen that A

complements the angle between x and vL , giving

sin ) = (V- v/ v = v1 / (3)

If 41
=
e B1/ mc is the angular velocity of gyration in B1 , the

gyration radius is Pl= va /1l and the displacement of the particle

in one excursion amounts to

2 1 sin) (x ) = (2 vl/ l) ( X 1l) (4)

The particle crosses the boundary into the other field (denoted B2)

with v1 reversed and the other two velocity components intact. It is

then turned towards the sheet and stays trapped in its vicinity, but

it is also displaced along the sheet in some direction, which on the

long-term average is the same as the direction of the particle's dis-

placement after two steps, one on each side of the discontinuity.

The particle's displacement on the side with x < 0 will be along

- ( x ) , since now - is the unit vector orthogonal to the boun-

dary and pointing into the region of the given field. By the preceding

equation, this displacement therefore is

( 2 Vl/ 2
) (2 X ) (5)

The total displacement in one "double step" along the sheet is therefore
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2 l x X [ -1
)

- . (6)

All particles are displaced in the same direction, and this will be

aligned with J if and only if B
1
= B2 .

(3) DISCONTINUITY AX THE BOUNDARY OF A PLASMA

Let each of the bounding media be filled with a guiding center

plasma and let the ratio of particle kinetic energy density to magnetic

energy density in each be denoted by Pi , where i is the index

appropriate to the medium. Because of the diamagnetic properties of

the plasma, equation (1) must be modified to

J - x X (EH (7)

where

o Hi = - E(8)

i being the volume magnetization of the appropriate medium. In a guiding

center plasma immersed in a constant field [e.g. Longmire, 1963, sect.

2-3 ; Northrop, 1963, sect. 4-A]

Mi, Bi i(9)

and hence

J = X [ 1 (l + 1) - 2(1 + P ] (10)
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If the boundary current between the media is in the direction given

by (6) , the cross product between the vectors inside the square bra-

ckets in equations (6) and (10) must vanish. This gives, after a few

steps

B1 ( 1 P) = B2( 1 + 2 (11)

This is not an unexpected result - it may also be derived from

hydromagnetic considerations (balance of the sum of particle pressure

and magnetic pressure) and has in fact been tested (with only partial

success) against magnetopause data by Ogilvie et al. [ 1971] . What is

new here is the derivation from the point of view of particle motion

(even though considerable simplification is involved) and the conclusion

that any relative orientation of BA and B2 can be maintained by a

trapped particle layer. In a vacuum, of course, both 1 and P 2

vanish and the result reduces to the one obtained in the preceding section.

Suppose that B and B are aligned: then equation (10) shows
-l -2

that J might have a direction opposite to that of B
1

- B2 . If this

is the case, the conclusions derived in case (1) are reversed and the

fields may be parallel as in figure (l-b), leading to an "overshooting"

mode of motion, while the motion shown in figure (l-a) does not take place.

Such modes may well be responsible for tangential discontinuities observed

in the solar wind in which the field's direction remained unchanged

[ Burlaga, 1971, fig. 20]
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APPLICATION TO THI MAGNSTOPAUSS

Existing theories of the magnetopause CWillis, 1971 and references

cited there ] generally assume an electrically neutral beam of protons

and electrons arriving at its surface in a parallel stream, which suffers

specular reflection at the discontinuity of the field. Because protons

have a much larger gyroradius than electrons, they are expected to

penetrate more deeply across the boundary and to create, by means of their

positive charge, a polarization field which greatly modifies the motion

of particles inside the boundary layer itself. It has also been suggested

that such electric fields might be neutralized by the high conductivity

of the ionosphere, to which the boundary is linked along magnetic field

lines. In fact, an experimental attempt to detect an electric field of

this kind Fairfield et al., 1972] has given negative results.

However, all such theories fail to treat the motion of charged

particles in a realistic manner, consistent with the existence of a

magnetic field on both sides of the boundary. Consider the neutral beam

impinging on the magnetopause: the reason why its particles move in

straight lines and do not spiral in the ambient field (in this particular

model of the motion) is that one deals here with a high-f plasma which

dominates the magnetic field rather than being dominated by it. This

"domination" is achieved by an induced electric field

_ = - vX B (12)
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As long as all the particles have the velocity v , the electric and

magnetic forces on them balance each other, allowing them to move in

straight lines.

Once a particle is reflected from a field discontinuity, however,

this balance is destroyed, because the velocity vector is changed. In

fact one finds that, instead of coming back along the directions of

specular reflection, the particles will remain trapped in the vicinity

of the discontinuity, moving in one of the modes discussed earlier.

The matter does not end here, however. Up to this point it has been

assumed that E of equation (12) extends all the way to the magnetopause.

If this is the case, the electric field would accelerate or decelerate

trapped particles as they move along the magnetopause and this, in turn,

would serve to diminish E near the boundary. However, once E is

reduced below the value given by (12) (with v the velocity of arrival),

incoming particles will no longer move in straight lines but will tend

to spiral in the surrounding magnetic field. The motion of the particles

when final equilibrium (if it exists) is achieved is not too clear :

instead of an aligned beam hitting the boundary, one might well wind up

near the boundary with an almost isotropic plasma and only a weak electric

fieldo

Such a situation would resemble case (3) discussed in the preceding

section. Equation (11) should then be satisfied, within the validity of

the assumptions made here. As noted earlier, this relation was tested

(for a few cases) by Ogilvie et al. [1971 but agreement was incomplete,
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possibly because observations of the energy spectrum inside the boundary

did not extend high enough to allow $ to be accurately determined.

Also, if this view of the magnetopause is correct, there should not exist

any component of B orthogonal to the boundary. An attempt by Sonnerup

and Cahill [ 1967, 1968 ] to detect such a component has yielded only a

small value, which could be due to the low resolution of the observations.
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